Motor – teorie 2/4
print
Motor – teorie 2/4
Jiří Čech (2003-12-04)
Každý mechanický stroj má svoji účinnost. Snahou každého konstruktéra je přijít s takovým řešením, které má co nejmenší mechanické ztráty. Při nadměrných ztrátách vzrůstá potřeba dodávky větší energie na provoz takového zařízení, v případě spalovacích motorů klesá dosažitelný výkon a vzrůstá spotřeba paliva. Ovšem každá snaha má své meze, tření se nikdy úplně nezbavíme. Spalovací motor je tepelný stroj a jeho konstrukce je počítána na provoz při určité teplotě, dnes nejčastěji okolo 90° C. Nejlepší vlastnosti má motor při teplotě 120° C, ovšem zatím nemáme přijatelně levné oleje, které by tuto teplotu snášely. Udržovat teplotu chladící kapaliny na hodnotě okolo 120° C znamená zvýšení tlaku v chladící soustavě aby nedošlo k jejímu varu. Při varu se vytváří parní bubliny, které značně omezují přestup tepla se stěn do kapaliny, dochází k místnímu přehřívání materiálu, který se v tom místě tepelně více roztáhne a narušuje tvar součásti se všemi negativními důsledky. Systém se zavzdušňuje, chladicí kapalina špatně cirkuluje. To dále komplikuje možnost použití tak vysoké teploty v provozu, protože se značně zvýší nároky na těsnost soustavy. (Motory Mercedes - Benz pro F1 této vlastnosti využily, provozní teplota je 125° C a při první sezóně nasazení v McLarenech byly nepřekonatelné jak výkonem, tak spotřebou.) Všechny zde uvedené hodnoty platí pro motor zahřátý na provozní teplotu.

 

Vnitřní ztráty můžeme rozdělit na čistě mechanické a hydraulické. Spalovací motory, které mají základ ve vratném přímočarém pohybu pístu ve válci, nejsou z hlediska mechanických ztrát nejlepší konstrukcí, rotační systémy jsou na tom výrazně lépe. Mechanické ztráty jsou závislé na zatěžujících silách, součiniteli tření a třecí ploše. Třecí ztráty jsou závislé na poměru maximálního a středního efektivního tlaku – čím je rozdíl menší, tím lepší účinnosti dosáhneme. Při zvýšení kompresního poměru se tento rozdíl zvětší a přestože se zlepší tepelná účinnost, mechanická se zhorší (vzpomeňte na odstavec o kompresním poměru v 1. části). Se zvětšujícím se tlakem ve válci se zvýší tlak, který vnikne do prostoru pod prvním pístním kroužkem a přitlačí ho ke stěně válce. Druhý kroužek má tento tlak již asi třetinový a třetí je jen vlastní pružností přitlačován ke stěně válce a tak jeho ztráty nejsou vysoké. Pokud porovnáme tření motoru normálně spalujícího a motoru poháněného cizím zdrojem, zjistíme, že přítlak prvního kroužku je v prvním případě asi o 10 kPa větší (u vznětového až o 17 kPa) a protože tyto ztráty rostou rychleji než střední efektivní tlak, mechanická účinnost se zhoršuje. Největším „spotřebitelem“ výkonu v motoru jsou písty. Plocha pláště pístu, nedostatečné mazání a jeho hmotnost při posuvném pohybu zvyšují ztráty ze všech částí motoru nejvíce. Píst je při svém pohybu přitlačován pohybem ojnice ke stěně válce, k této síle se přidává ještě tlak plynů ve válci. Pokud si představíme pohyb ojnice, je nám jasné, že ojnice musí mít určitou minimální délku, jinak se odpor mechanismu nepřípustně zvýší. Délka ojnice podle všech zjištění by neměla klesnout pod 3,2 x r (r = polovina zdvihu), do této hodnoty jsou ztráty třením pístu přijatelné. Měřením se zjistilo, že píst se podílí na ztrátách asi 37% a pístní kroužky asi 13%, takže dohromady 50% ztrát už zná své nositele. Pokud budeme odebírat jen částečný výkon, ztráty třením pístu se sice zmenší, ale jen málo a tak se mechanická účinnost zhorší (nebráno v potaz zvýšení hydraulických ztrát). Takže pokud máme možnost, osadíme motor speciálními kovanými písty (jen se dvěma úzkými kroužky) s nízkou hmotností a malou styčnou plochou pláště pro snížení třecí plochy a snížení odstředivých hmotností. Uvědomte si, že hmota pístu urychlená v první fázi dráhy ve válci má snahu pokračovat v pohybu stejným směrem a táhne za sebou klikový hřídel, čímž brzdí jeho pohyb. V určitých otáčkách se tlak plynu ve spalovacím prostoru vyrovná s odstředivou silou pístu a ztráta se zmenší. Čím vyšší otáčky, tím větší ztráty, takže pro dosažení vysokých otáček musíme použít co nejnižší hmotnosti posuvných částí. Pro každé otáčky je nutná určitá maximální hmotnost posuvných částí a pro další zvyšování otáček musíme dále na hmotnosti ubrat, jinak sice můžeme otáček dosáhnout, ale bez nárůstu výkonu, vše se ztratí na mechanických odporech. Odlehčení pístu se ale vyplatí i v nízkých otáčkách, každopádně se zlepší měrná spotřeba paliva. Každé odlehčení má ale své meze, odebráním materiálu se v inkriminovaném místě sníží pevnost, pozor, aby se vám píst ve vysokých otáčkách neroztrhl.

 

Dalším významným odběratelem výkonu je klikový hřídel. Zpravidla bývá uložen v kluzných ložiskách a tak má o něco vyšší ztráty, než pokud by se použila ložiska valivá. Kluzná ložiska jsou výrobně levná, tichá v provozu a dobře se s nimi uložení klikového hřídele řeší, ale pro svůj provoz potřebují určité minimální otáčky (proto pozor na příliš malé hodnoty otáček volnoběhu, klika se nedostatečně maže; kromě toho olejové čerpadlo dodává málo oleje). Princip valivých otáček je ten, že při pohybu čepu v ložisku (pánvi) se vytvoří pomocí hydrodynamického tlaku kluzná vrstva oleje, která odděluje obě části od sebe. V ideálním případě dojde k trvalému vznosu čepu v pánvi a vlastní mechanické tření tak úplně zanikne, ztráty jsou způsobovány jen viskozitou oleje (platí hlavně pro čistě rotující části, jako turbíny atd.). Z tohoto pohledu má kluzné uložení neomezenou životnost, pokud je mazáno čistým olejem bez nečistot. Největší tření nastává hlavně při rozběhu, podle rychlosti rozběhu se vytvoří kluzná vrstva s menším nebo větším zpožděním. S tímto musí být počítáno při návrhu složení výstelky pánve, aby i v těchto mezních stavech materiál sám o sobě měl dostatečně nízké tření. Největším nepřítelem kluzného uložení jsou nízké otáčky a kývavý pohyb, kdy se již z principu hydrodynamická vrstva nemůže vytvořit. Proto je vhodné pro uložení vahadel, pístních čepů, rozvodových kol atd. použít ložiska valivá. Kluzná ložiska dnes vykazují značnou životnost (několikrát vyšší než valivá) a jejich výhoda je také v tom, že umožňují provoz i ve značně opotřebovaném stavu. Z hlediska ztrát třením jsou na tom ale o něco hůře. Představte si síly na klikovém hřídeli vznikající za provozu motoru a je vám jasné, že proměnlivé působení tlaků a odstředivých sil neumožňuje ideální rotaci čepů v pánvi, vrstva oleje je narušována a tím se tření zvyšuje. Protože s uložením klikového hřídele asi sami nic neuděláme, budeme se aspoň snažit mít v motoru kvalitní a čistý olej. Maximálně můžeme pro vysoké otáčky přebrousit čepy tak, aby se zvětšila původní vůle na hodnotu 0,04 mm, sníží se odpory, ale i životnost. Uložení kliky na valivých ložiskách je komplikované, klikový hřídel musí být dělený (nemusí, ale výroba speciálně upravených valivých ložisek je neskutečně drahá). Uložení klikového hřídele u dvoudobých motorů se přednostně řeší jako valivé, protože mazání mastnou směsí není pro kluzná ložiska nejvhodnější (proto se u víceválcových dvoutaktů, kde se používá nedělený klikový hřídel, používá u převodovky volnoběžka, aby se při provozu motor často odlehčoval z důvodu obnovení mazání kluzných ložisek). Ojnice bývá (není to pravidlem, u sériových motorů se používají pouzdra a pánve) uložena na obou koncích na jehlových ložiskách, protože zde není tlakové mazání, které by dopravilo olej na obtížně přístupné místa ojničního a zvlášť pístního čepu. Oko s pístním čepem navíc koná kývavý pohyb, který není pro použití kluzného uložení vůbec ideální. Ztráty klikového hřídele včetně víření se pohybují někde na 16 - 20%, pokud je teplota motoru v předepsaných mezích. Se snižující se teplotou se mění vůle a viskozita oleje a ztráty rostou. Ztráty v rozvodu se pohybují okolo 11%, z toho ztráty v pohonu vačkového hřídele převyšují. Ztráty hydraulické (výměna obsahu válce při plně otevřené škrtící klapce) jsou asi 16% a zbytek spotřebují olejové, vodní a palivové čerpadlo. Toto procentuální rozdělení platí obecně, v různých konstrukcích se přesné hodnoty mohou odlišovat. Nejvíce se to projeví u počtu uložení klikového hřídele, pětkrát uložená klika u čtyřválce je z hlediska ztrát méně výhodná než klika uložená třikrát.

 

Zvláštním problémem jsou ztráty při víření vzduchu s olejem v klikové skříni. U čtyřválce se vždy dva a dva písty pohybují v protisměru a tak nedochází ke stlačování vzduchu, které by zvyšovalo ztráty. Všeobecně to platí pro všechny řadové motory. Jiná situace nastává u vidlicových motorů a hlavně závodních motorů s tunelovými skříněmi při rozevření řad válců 90°. Pohyb pístů jedné dvojice nastává s malým fázovým zpožděním a tak zde k „pumpování“ dochází. Proudící vzduch strhává kapičky oleje a při tak velkém stlačení běžné filtrační vložky, které odlučovaly olej ze vzduchu, umístěné v odvzdušňovacím otvoru, ztrácely účinnost. Tyto problémy mají motocyklové dvouválcové motory s válci do V, zde se proto používaly zpětné ventily, pomocí nich se dosáhlo podtlaku v klikové skříni a kromě snížení ztrát vířením (řídký vzduch má menší odpor) se zamezily ztráty oleje netěsnostmi ve spárách klikové skříně. Popsané dvojice jsou u osmiválce čtyři a tak se musí jednotlivé prostory pod dvojicemi válců spolu propojit velmi velkými otvory, aby mohl vzduch proudit s minimálním odporem a nestlačoval se. Kromě těchto pumpovních ztrát se projevuje také ztráta z víření vzduchu s olejem ve směru otáčení klikového hřídele. Vzduch s olejem má určitou hustotu a hmotnost, která se musí při změně otáček urychlovat. Je proto nutné upravit tvar spodní skříně tak, aby kladl co nejmenší odpor pohybu rotujícího vzduchu, takže se všeobecně u závodních motorů používá tunelová skříň (válcového tvaru). Hmotnost oleje je vyšší než vzduchu a tak je snaha olejovou náplň přemístit mimo klikovou skříň, aby se rozstřikovaná olejová náplň nezúčastňovala víření. Tomuto provedení se říká „suchá kliková skříň“, měly ji i tovární škodovky. Při mazání motoru olej stéká zpět do klikové skříně, odkud je odsáván jedním nebo dvěma čerpadly do oddělené nádoby. Technicky zvládnout suchou skříň není vůbec jednoduché, při odčerpávání oleje se nasává i vzduch, olej vytváří mlhu, která se musí někde odfiltrovat, pro mazání motoru s výjimkou válců je olejová mlha nepoužitelná. Olej sice odstředivou silou při rotaci v tunelové skříni ulpívá na stěnách a odtud má snahu stékat dolů, ale rotující vzduch mu v stékání částečně brání. Umístit sběrné kanálky na správná místa chce také dost zkušeností. Přes všechny tyto problémy je zisk natolik zajímavý, že se provedení se suchou skříní pro vysoké otáčky vyplatí použít.

 

Mechanická účinnost není konstantní veličina. Musíme si uvědomit, že v případě vysokých otáček je vždy výrazně menší, protože ztráty rostou s druhou mocninou otáček. Při změně otáček směrem dolů se sice určité veličiny, působící na velikost ztrát, zmenší, ale jiné veličiny se mohou zvětšit a podle jejich poměru dojde k míře zlepšení mechanické účinnosti. Každopádně nejvíce proměnlivou veličinou jsou hydraulické ztráty při výměně obsahu válců. Jakékoli seškrcení sacího potrubí značně zvýší hydraulické ztráty a tak provoz s částečným výkonem sníží mechanickou účinnost vždy i když poklesnou ztráty třením díky poklesu spalovacích tlaků. Tento jev také částečně vysvětluje nízkou spotřebu paliva vznětových motorů, které žádné škrcení v sání nemají, a to i při menší výhřevnosti nafty proti benzínu.

 

Klikový hřídel:

 

Klikový hřídel převádí posuvný pohyb pístu na otáčivý. Na jedné straně nepřevádí pohyb pístu ideálně, kompresní a expanzní zdvih je z pohledu úhlové vzdálenosti stejný. Na straně druhé zabezpečuje přijatelně pozvolný nárůst točivého momentu při expanzním zdvihu a tak nejsou hřídele převodovky příliš namáhány rázy ze spalování. Na stlačení směsi se díky proměnlivému převodu pohybu pístu spotřebuje přijatelná energie. Pokud chcete, vezměte do ruky tužku, kružítko a úhloměr a zkuste si graficky zobrazit průběh pohybu pístu vůči otáčení klikového hřídele a dojdete k jedné zajímavé věci – v HÚ je k zastavení a rozběhu pístu nutná kratší doba než v DÚ. Je to dáno konečnou délkou ojnice a tento jev způsobuje vibrace motoru. (Přesné matematické odvození nepatří pro svou rozsáhlost do tohoto článku.) Každopádně zatím nikdo jiný s ničím lepším nepřišel, použití šikmé desky a uspořádání válců do čtverce se neujalo pro určité zvláštnosti, které omezují rozsah použití.

 

Uspořádání jednotlivých klik je dáno účelem použití. Záleží na počtu a uspořádání válců (řadový, vidlicový, do W, plochý, hvězdicový atd.). Uspořádání válců se vždy řeší tak, aby se dosáhlo co nejlepšího vyvážení. Nejdříve si popíšeme vyvážení jednoválcového motoru, od něho jsou všechna uspořádání odvozena.

 

V každém pístovém stroji působí dva druhy sil. Jedny síly jsou od tlaku plynů ve válci a druhé jsou setrvačné síly vyvolané účinkem pohybujících se hmotností částí klikového mechanizmu. Uvědomíme-li si, že tlak plynů působí všemi směry, tak je nám jasné, že tlak má snahu nejenom točit klikovým hřídelem, ale i točit válci v obráceném směru. Klopící a užitečný moment má tedy stejnou velikost. Proto musíme motor řádně upevnit, aby se nestalo to, že auto bude stát a motor se nám uvnitř bude točit okolo klikové hřídele. (Možná vám to připadá směšné, ale každý pilot jednomotorového letadla s těmito silami musí počítat a ví, co to obnáší.)

 

U jednoválcového motoru se vyvažují:

 

1. setrvačná síla rotačních hmotností

2. setrvačné síly prvního řádu posuvných hmotností

3. setrvačné síly druhého řádu posuvných hmotností

 

Bod 1. – tato síla je vyvolána prostou rotací motoru a dá se úplně vyvážit vývažkem na protilehlém rameni kliky. Pokud bychom toto neudělali, výsledkem by bylo něco podobného milovaným pračkám Tatramat při ždímání. Tato síla se vyvažuje vždy přednostně před ostatními. Jde vlastně o statické vyvážení.

 

Bod 2. – síly prvního řádu posuvných hmotností vznikají z pohybu pístu ve válci a v případě použití vývažku na klice o hmotnosti poloviny vznikající síly je možné je vyvážit rotujícím závažím o téže hmotnosti, které se bude otáčet stejnými otáčkami v opačném směru.

 

Bod 3. – síly druhého řádu posuvných hmotností, které vznikají již výše zmíněnou anomálií v průběhu pohybu pístu, mají dvojnásobnou frekvenci než síly prvního řádu a dají se odstranit pouze posuvnými hmotami v obráceném směru působení. V praxi se toto řeší dvěma vyvažovacími hřídeli, které se otáčejí vůči sobě v protifázi (v obráceném směru) dvojnásobnými otáčkami, než má motor. (Takhle se elegantně našvindluje posuvný pohyb.)  Vzhledem k tomu, že tyto síly jsou menší než první dvě, v praxi se většinou zanedbávají. (Síly vyšších řádů jsou velmi malé a v praxi se jimi nikdo nezabývá.)

 

Úplné vyvážení jednoválcového motoru nemá praktický význam, protože se tím ztratí jednoduchost a zvýší se mechanické ztráty. Protože činnost jednoválcového čtyřdobého motoru zatěžuje spojku a převodovku velkými rázy, používají se motory víceválcové, kde se určitým uspořádáním dosáhne toho, že se většina vznikajících sil vzájemně vyruší a tak se dosáhne automatického vyvážení. Jenže u víceválcových motorů vstupují do hry momenty od setrvačných sil rotačních a posuvných hmotností, tzn. kmity, které jsou kolmé na osu otáčení a vznikají vzájemným „taháním“ ojnic za ramena kliky. V praxi se tedy sleduje šest veličin:

 

1. setrvačná síla rotačních hmotností

2. setrvačné síly prvního řádu posuvných hmotností

3. setrvačné síly druhého řádu posuvných hmotností

4. moment setrvačných sil rotačních a posuvných hmotností

5. moment setrvačných sil prvního řádu

6. moment setrvačných sil druhého řádu

 

Tyto síly a momenty se přenášejí do uložení motoru a způsobují různé vibrace.  

 

Síly jsme si již popsali. Momenty mají zajímavou vlastnost – pokud je uspořádání klikového hřídele symetrické k těžištní rovině a jsou-li síly u všech ústrojí stejně velké, momenty se navzájem vyruší. Pokud se toho nedosáhne přímo, dají se momenty většinou vyvážit vývažky na hřídeli.

Vyvažování čtyřdobých motorů jde kupodivu lépe než u motorů dvoudobých. Úplného samočinného vyvážení se dosáhne až u dvanáctiválce, zatímco u čtyřdobého motorů stačí válců šest. Dvoudobé motory mají problémy hlavně s momenty.

 

Zvláštním případem je vyvažování dvojice válců s uspořádáním do V 90° (obě ojnice jsou na jednom ojničním čepu). Síly 1. řádu vyvolané posuvnými hmotami se skládají v jednu složku s konstantní velikostí, která se otáčí stejně rychle jako klikový hřídel. Na vyvážení stačí vývažky na hřídeli. Pokud uspořádáme osmiválec tak, že je klika zalomena po 90°, vše se samočinně vyváží a zbylé momenty 1. řádu se vyváží pouze dvěma vývažky na koncích hřídele. Platí i pro uspořádání s pobočnou ojnicí (ojnice druhého válce není uchycena přímo na ojničním čepu, ale chápe se čepu vytvořeného na ojnici společně pracující dvojice, válce mohou být umístěny v ose). Tohoto příznivého jevu se využívá pro konstrukci osmiválcových motorů, uspořádání do V je výhodnější než řadové.

 

Pro zajímavost uvedu několik příkladů uspořádání motorů a jejich vyvážení:

 

řadové motory:

  • jednoválce dvoudobé a čtyřdobé jsou na tom stejně, vyvážení jsem už popsal

  • dvouválec čtyřdobý je na tom špatně, vše je dvakrát větší než u jednoválce; pokud má písty po 180°, tak vyvážení odpovídá dvoudobému – má nevyvážené síly 2. řádu a momenty od sil a momenty 1. řádu

  • tříválec při zalomení kliky po 120° má nevyvážené všechny momenty (čtyř i dvoudobý stejně)

  • čtyřdobý čtyřválec (klika po 180°) má nevyvážené síly 2. řádu a to 4x více než jednoválec! Dvoudobý (klika po 90°) má nevyvážené všechny momenty

  • pětiválec čtyř i dvoudobý má nevyvážené všechny momenty, z toho momenty 2. řádu znatelně

  • šesti, osmi, deseti a dvanáctiválec čtyřdobý je vyvážen úplně, devítiválec má nepatrně „rozhozené“ momenty 2. řádu

  • dvoudobý šesti, sedmi, osmi, devíti, deseti, jedenáctiválec má vždy problémy s momenty, dvanáctiválec je vyvážen úplně

motory do V (správná terminologie je V-motor):

  • úplné samočinné vyvážení mají až dvanácti a šestnáctiválce

  • menší počty válců mají problémy s momenty, u osmiválce se dají vyvážit na klice

  • dvouválec má problémy se silami z rotačních hmotností

  • dvoudobý plochý dvouválec má nevyvážené síly z rotačních hmotností

  • dvoudobý čtyřválec 90° má nevyvážené síly 2. řádu, momenty lze na klice vyvážit

  • dvoudobé šesti, osmi, dvanácti a šestnáctiválce mají problémy s momenty

Problémy s momenty nebývají u víceválců zase tak velké, většinou jsou hodnoty momentů malé a v praxi se zanedbávají. V mnoha případech stačí změnit úhel jednotlivých řad válců a úplného vyvážení se dosáhne. Vyvažovací hřídele se používají převážně u tří a čtyřválců, u vyšších počtů válců jich není zapotřebí, nevyvážené momenty nebývají vysoké. Čtyřdobé dvouválce se v řadovém provedení nepoužívají, u plochých motorů (správně V-motor 180°) je vyvážení výrazně lepší, písty se pohybují proti sobě.

 

Zvláštním případem pro vyvážení jsou motory hvězdicové. Tyto motory se kdysi používaly u letadel, kde se využívala jejich krátká stavební délka. Počet válců je vždy lichý a všechny ojnice se chápou jednoho klikového čepu, nebo jsou řešeny jako pobočné. Momenty zde nevznikají a všechny síly se vyváží vývažkem na klikovém hřídeli.

 

Celé to povídání o vyvážení mělo jeden účel – popsat síly, které způsobují vibrace, které se přenáší přes uložení do karosérie. Vyvážení motoru je vlastně vyvážení navenek, vnitřní síly zůstávají a namáhání materiálu v tahu příliš neklesne. Čím menší péči vyvážení věnujeme, tím více musíme použít tlumících materiálů v uložení motoru do karosérie (silentbloky s hydraulickým tlumením). Každé tlumení ale odebírá výkon motoru, proto se u závodních motorů používá uložení „natvrdo“ bez ohledu na cokoliv, výkon je prvořadý. Tzv. úplně vyvážené motory jednak nezpůsobují vibrace a nezvyšují tedy hluk ve vozidle. Kromě toho se „zadarmo“ získá nějaký výkon. Jen pro představu – u automobilů se používalo maximálně 16 válců, nejčastěji dvanáctiválcový V-motor 60°, při uložení motoru vzadu 180°. Perličkou Volkswagenu je osmnáctiválcový motor se třemi řadami válců. V meziválečné době bylo postaveno několik čtyřiadvacetiválců. Takové motory značně velkých objemů (přes 20 dm3) se používaly běžně u letadel, největší počet byl 42 válců (pouze jeden typ).

 

Nás všechny zajímá hlavně čtyřválcové uspořádání. Problémy s vyvážením sil 2. řádu se pro zjednodušení neřeší. Tyto síly se přenášejí do karosérie a zvyšují hluk v kabině. Vyšší kategorie vozidel používají u čtyřválců vyvažovací hřídele. Musí být dva ve správném postavení a otáčejí se dvojnásobnou rychlosti klikového hřídele proti sobě. Pohon bývá oboustranným ozubeným řemenem. V tomto případě se potlačí vibrace za účelem většího výkonového zisku a hlavně snížení hluku.

 

Problém hluku u Š 1000 – 120 není jen v umístění motoru vzadu. Motor je pevně spojen s převodovkou a převodovka tvoří nosnou část zadních poloos, pro dosažení definované geometrie zadní nápravy za provozu musí být tuhost uložení převodovky velká a tím se omezí tlumení vibrací motoru, které se přenášejí do karosérie více, než u jiného typu uložení. Při současně působící rezonanci karosérie s rezonancí poháněcí soustavy (skutečně se některá vozidla ve výrobě z tohoto pohledu příliš nepovedla) je hluk značný a má navíc nepříjemný charakter. V hlukovém spektru převažuje rezonanční část, akustická je zřetelná až ve vysokých otáčkách. Velkým pokrokem bylo použití zadní vlečené nápravy, kde se řeší tuhost uložení ramen pomocí dalšího šikmo uloženého ramena. Převodovka již není nosnou částí nápravy a proto může být uložena na měkkém lůžku (které bylo od roku 1987 ještě více změkčeno). Rezonanční kmitočet karosérie se tím výrazně vzdálil od rezonančního kmitočtu poháněcí soustavy, hluk ve vozidle je jednak menší a navíc má příjemnější charakter. Dalším měřením se vytipovala místa největšího vytváření hluku a byla například navařena závaží do příčky motoru (u kyvadlové nápravy dvě a u vlečené jedno), změněny místa a počty bodových svarů, na podlahy a zadní plato se natavovala bitumenová vrstva (známý to „asfalt“ pod koberci). Vše za účelem většího útlumu hluku a změnění rezonančního kmitočtu karosérie. Pokud jste někdy jeli s „užovkou“ a poté s posledními stotřicítkami, jistě jste zaznamenali slušný rozdíl. Motory uložené vpředu jak podélně, tak příčně jsou na tom s uložením podobně jako stotřicítka, poháněná přední nebo zadní náprava je uložena samostatně a poháněcí ústrojí může být uloženo měkce nebo i s hydraulickým tlumením. Hluk motoru je převážně akustického charakteru a dá se dobře potlačit nalepením dostatečného množství tlumících hmot na stěny motorového prostoru. Někdy se povede špatně zvolit pro určitý typ motoru místa pro silentbloky a vibrace se nadměrně přenášejí do karosérie. Jiný typ motoru ale hlučný není (např. Moskvič 408 a 412). Zde pomůže posunutí některého – většinou stačí posunout jen jeden – silentbloku na jiné místo v karosérii a najednou je vše výrazně tišší. Nejvíce se omezí přenos hluku uložením motoru do pomocného rámu, který je pružně (s jinou vlastní frekvencí) uložen do karosérie. Vzorovou ukázkou je uložení motorů Rolls – Royce.

 

Klikový hřídel musí být pevný a tuhý. Tuhost se dosáhne krátkou délkou a velkým překrytím klikových a ojničních čepů. Nedostatečná tuhost vede k průhybům hřídele a tím se snižuje životnost kluzných ložisek, protože pro jejich životnost je nejdůležitější rovinnost polohy čepů vůči pánvi. Průhyby jsou sice řádově v tisícinách milimetru, ale i to stačí. Pokud se někomu toto tvrzení nezdá, u škodovky na píst působí při nejvyšším tlaku síla přes 1,6 tuny a taková síla k průhybům hřídele zcela jistě vede. Každopádně deformační výchylka hřídele musí být vždy menší než je vůle čepu v ložisku, jinak dochází ke koncentraci napětí na okrajích čepů a vydírání ložisek. Za provozu dochází nejenom k prohýbání, ale i torzním kmitům hřídele z působení proměnlivých tlaků jednotlivých spalovacích cyklů. Výkmit konců hřídele navzájem může dosahovat maximálně 4°. Čím je hřídel delší a nebo má větší zdvih, tím jsou torzní kmity v

edit
cmc.fordclubs.org
 Created by BasicX, Zbynek | Nahoru | Home | E-mail
 
 Copyright © 2003 - 2009 CMC + CFC, všechna práva vyhrazena